AP BIOLOGY | Curriculum Map and Pacing Guide

COURSE DESCRIPTION:	Course SCI370
This provides intensive study of topics for students interested in biologically-related fields of study in	1 year, 1.25 credit
college. Units of study include ecology, biochemistry, cells, enzymes and metabolism, molecular genetics,	Grades 10-12
heredity, evolution, and plant and animal structure and function. The first three days of each week	Prerequisite: Physical Science,
students meet for extended time (72 minutes) with the remaining days meeting for the regular class	Honors or regular Biology, teacher
period (52 minutes). Students will keep a laboratory notebook and are required to write a scientific paper	recommendation based on grade B
each quarter and present using Excel [®] spreadsheets and Lab Quest [®] with probes.	or better in Chemistry

QUARTER 1

Topic: Behavioral Ecology

Key Terms: proximate questions, ultimate questions, ethology, fixed-action pattern, imprinting, innate behavior, kinesis, taxis, pheromones, spatial learning, optimal foraging theory, agnostic behavior

Measurable Skills: Design, interpreting and recording data, justify, investigating, making and checking predictions, concluding and presenting data in a Lab report

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.A.1	L.O. 2.2: Justify a scientific claim that free energy is required for living	
	systems to maintain organization, to grow or to reproduce, but that	
	multiple strategies exist in different living systems. Science Practice (SP) 2,	
	3, 4, 5	
2.A.1	L.O. 2.3: Predict how changes in free energy availability affect organisms,	
	populations and ecosystems.	
2.E.2	L.O. 2.37: Connect concepts that describe mechanisms that regulate the	
	time and coordination of physiological events.	
2.E.3	L.O. 2.38: Analyze data to support the claim that responses to information	Design Behavior Lab
	and communication to information affect natural selection.	
2.E.3	L.O. 2.40: Connect concepts in and across domains to predict how	
	environmental factors affect responses to information and change	
	behavior.	
2.C.2	L.O. 2.42: Pose a scientific question concerning the behavioral or	
	physiological response of an organism to a change in its environment.	

QUARTER 1

Topic: Behavioral Ecology

Key Terms: proximate questions, ultimate questions, ethology, fixed-action pattern, imprinting, innate behavior, kinesis, taxis, pheromones, spatial learning, optimal foraging theory, agnostic behavior

Measurable Skills: Design, interpreting and recording data, justify, investigating, making and checking predictions, concluding and presenting data in a Lab report

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.E.1	L.O. 3.40: Analyze data that indicate how organisms exchange information in response to internal changes and external cues, and which can result in changes in behavior.	
3.E.1	L.O. 3.41: Create a representation that describes how organisms exchange information in response to internal changes and external cues, and which can result in changes in behavior.	
3.E.1	L.O. 3.42: Describe how organisms exchange information in response to internal changes or environmental cues.	
1.A.1	L.O. 1.3: Apply mathematical methods to data from a real or simulated population to predict what will happen to the population in the future. Science Practice (SP) 1, 2, 4, 5	Obituary Lab
2.D.1	L.O. 2.23: Design a plan for collecting data to show that all biological systems (cells, organisms, populations, communities and ecosystems) are affected by complex biotic and abiotic interactions.	
4.A.5	L.O. 4.11: Justify the selection of the kind of data needed to answer scientific questions about the interaction of populations within communities.	
4.A.5	L.O. 4.12: Apply mathematical routines to quantities that describe communities composed of populations of organisms that interact in complex ways.	
4.A.5	L.O. 4.13: Predict the effects of a change in the community's populations on the community.	

QUARTER 1				
Topic: Ecology: Commu	inity Ecology			
Key Terms: predation,	herbivory, commensalism, mutualism, biogeography, primary succession, second	ondary succession		
Measurable Skills: Ana	lyzing data, compare and contrast, differentiate, justify			
AP College Board	Student Learning Targets	Learning Activities/Investigations		
Essential Knowledge	(AP Learning Objectives and Science Practices)			
2.E.3	L.O 2.39: Justify scientific claims, using evidence, to describe how timing	Interpreting a Scientific Paper, Inquiry:		
	and coordination of information of behavioral events in organisms are	What Caused the Drastic Decline of the		
	regulated by several mechanisms. Science Practice (SP) 1, 5, 7	Illinois Greater Prairie Chicken		
		Population? Article 7		
4.A.5	L.O. 4.11: Justify the selection of the kind of data needed to answer			
	scientific questions about the interaction of populations within			
	communities.			
2.D.1	L.O. 2.22: Refine scientific models and questions about the effect of	Ecology FRQ		
	complex biotic and abiotic interactions on all biological systems from cells			
	and organisms to populations, communities and ecosystems			
4.C.4	L.O. 4.27: Make scientific claims and predictions about how species			
	diversity within an ecosystem influences ecosystem stability.			
2.D.1	L.O. 2.24: Analyze data to identify possible patterns and relationships			
	between a biotic or abiotic factor and a biological system (cells, organisms,			
	populations, communities or ecosystems).			

QUARTER 1

Topic: Ecosystems and Restoration Ecology

Key Terms: Gross primary productivity, Net primary productivity, Eutrophication, Biological magnification, Evapotranspiration, Ecosystem, Trophic levels

Measurable Skills: Model, collecting, recording, predict, interpreting, communicating, investigate, concluding and presenting data in a lab report and argumentative presentation

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.D.3	L.O. 2.28: Use representations or models to analyze quantitatively and qualitatively the effects of disruptions to dynamic homeostasis in biological systems.	Fertilizer Design Lab

QUARTER 1

Topic: Ecosystems and Restoration Ecology

Key Terms: Gross primary productivity, Net primary productivity, Eutrophication, Biological magnification, Evapotranspiration, Ecosystem, Trophic levels

Measurable Skills: Model, collecting, recording, predict, interpreting, communicating, investigate, concluding and presenting data in a lab report and argumentative presentation

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
4.A.4	L.O. 4.9: Predict the effects of a change in a component(s) of a	Prelab Dissolved Oxygen
	biological system on the functionality of an organism(s).	
4.A.4	L.O. 4.10: Refine representations and models to illustrate	
	biocomplexity due to interactions of the constituent parts.	
4.A.5	L.O. 4.12 Apply mathematical routines to quantities that describe	Eutrophication POGIL
	communities composed of populations of organisms that interact	Dead Zones: Gulf of Mexico
	in complex ways.	
4.A.6	L.O. 4.14: Apply mathematical routines to quantities that describe	
	interactions among living systems and their environment, which	
	result in the movement of matter and energy.	
4.A.6	L.O. 4.15: Use visual representations to analyze situations or solve	Dissolved Oxygen Lab Presentation.
	problems qualitatively to illustrate how interactions among living	
	systems and with their environment result in the movement of	
	matter and energy.	
4.A.6	L.O. 4.16: Predict the effects of a change of matter or energy	Dissolved Oxygen Lab.
	availability on communities. Science Practice (SP) 1, 2, 3, 4, 5, 7	
4.B.3	L.O. 4.21: Predict consequences of human actions on both local	
	and global ecosystems.	

QUARTER 1					
Topic: Chemistry of Life: Water	and Life and Carbon and the Molecular Diversity of Life				
Key Terms: Polar molecule, adl	nesion, surface tension, cohesion, kinetic energy, specific heat, buffers	s, hydrocarbons, structural isomers,			
geometric isomers, enantiomer	S.				
Measurable Skills: Interpreting,	recording, comparing, investigating, reporting.				
AP College Board	AP College Board Student Learning Targets Learning Activities/Investigations				
Essential Knowledge	(AP Learning Objectives and Science Practices)				
2.A.3	L.O. 2.8: Justify the selection of data regarding types of molecules	Transpiration Lab.			
	that an animal, plant or bacterium will take up as necessary				
building blocks and excrete as waste products.					
2.A.3	L.O. 2.9: Represent graphically or model quantitatively the	Transpiration pre-lab			
	exchange of molecules between an organism and its environment,				
	and the subsequent use of these molecules to build new				
	molecules that facilitate dynamic homeostasis, growth and				
	reproduction. Science Practice (SP) 1, 2, 3,4, 5, 6, 7				
1.D.1	L.O. 1.27: Describe a scientific hypothesis about the origin of life	Water FRQ			
	on Earth.	Water Demonstration			

	QUARTER 1					
Topic: Chemistry of Life: Struct	ure and Function of Large Biological Molecules					
Key Terms: Dehydration and h	nydrolysis reactions, carbohydrates, fats, proteins, nucleic acids, satur	ated and unsaturated fats, phospholipid,				
enzymes, amino acids, protein	conformation, denaturation, pyrimidine, purine					
Measurable Skills: Compare co	ontrast, collecting and recording data, problem solving the unknowns,	distinguishing				
AP College Board	Student Learning Targets Learning Activities/Investigations					
Essential Knowledge	(AP Learning Objectives and Science Practices)					
4.A.1	L.O. 4.1: Explain the connection between the sequence and the	Carbohydrate Lab				
	subcomponents of a biological polymer and its properties. Science					
	Practice (SP) 3,4,5					
4.A.1	L.O. 4.2: Refine representations and models to explain how the					
	subcomponents of a biological polymer and their sequence					
	determine the properties of that polymer.					
4.A.1	L.O. 4.3 Use models to predict and justify that changes in the					
	subcomponents of a biological affect the functionality of the					

	QUARTER 1				
Topic: Chemistry of Life: Struct	ture and Function of Large Biological Molecules				
Key Terms: Dehydration and h	nydrolysis reactions, carbohydrates, fats, proteins, nucleic acids, satura	ated and unsaturated fats, phospholipid,			
enzymes, amino acids, protein	conformation, denaturation, pyrimidine, purine				
Measurable Skills: Compare co	ontrast, collecting and recording data, problem solving the unknowns,	distinguishing			
AP College Board	Student Learning Targets Learning Activities/Investigations				
Essential Knowledge	(AP Learning Objectives and Science Practices)				
	molecule.				
4.B.1	L.O. 4.17: Analyze data to identify how molecular interactions				
	affect structure and function.				
4.C.1	L.O. 4.22: Construct explanations based on evidence of how				
	variation in molecular units provides cells with a wider range of				
	functions.				

	QUARTER 1	
Topic: Tour of the Cell		
Key Terms: Electron microsco	pe, prokaryotic and eukaryotic cell, plasma membrane, (all plant and	animal organelles), plasmodesmata, tight
junctions, desmosomes, gap j	unctions	
Measurable Skills: Compare of	contrast, investigate, predict	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.B.3	L.O. 2.13: Explain how internal membranes and organelles	Root Leaf and Stem Lab
	contribute to cell functions. Science Practice (SP) 1,6,7	
2.B.3	L.O. 2.14: Use representations and models to describe differences	
	in prokaryotic and eukaryotic cells.	
4.A.2	L.O. 4.4: Make predictions about the interactions of subcellular	
	organelles.	
4.A.2	L.O. 4.5: Construct explanations based on scientific evidence as to	
	how interactions of subcellular structures provide essentials	
	functions.	
4.A.2	L.O. 4.6: Use representations and models to analyze situations	
	qualitatively to describe how interactions of subcellular structures	
	which possess specialized functions, provide essential functions.	

OUARTER 1					
	•	7.1		D.	1
	•	/= \			_

	•	
Topic: Tour of the Cell		
Key Terms: Electron microsco	pe, prokaryotic and eukaryotic cell, plasma membrane, (all plant and a	inimal organelles), plasmodesmata, tight
junctions, desmosomes, gap ju	unctions	
Measurable Skills: Compare co	ontrast, investigate, predict	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
4.B.2	L.O. 4.18: Use representations and models to analyze how	
	cooperative interactions within organisms promote efficiency in	
	the use of energy and matter.	

QUARTER 1			
Topic: Membrane Structure and	l Function of the Cell		
Key Terms: : Selective permea	bility, amphipathic, fluid mosaic model, integral proteins, peripheral prote	eins, glycolipids, glycoproteins,	
concentration gradient, passive	and active transport. Isotonic, hypertonic, hypotonic, turgid, plasmolysis,	, sodium potassium pump, cotransport,	
exocytosis, endocytosis, proton	pump		
Measurable Skills: Design. Inve	stigate, problem solving, compare contrast, construct, critique		
AP College Board	Student Learning Targets	Learning Activities/Investigations	
Essential Knowledge	(AP Learning Objectives and Science Practices)		
2.A.3	L.O. 2.6: Use calculated surface area-to-volume ratios to predict which	Surface Area to Volume Lab	
	cells might eliminate wastes or procure nutrients faster by diffusion.		
	Science Practice (SP) 1, 2, 3, 4, 5		
2.A.3	L.O. 2.7: Explain how cell size and shape affect the overall rate of	"Off to the Races" Lab	
	nutrient intake and rate of waste elimination.		
2.B.1	L.O. 2.10: Use representations and models to pose scientific questions	Osmosis Pre-Lab	
	about the properties of cell membranes and selective permeability		
	based on molecular structure.		
2.B.1	L.O. 2.11: Construct models that connect the movement of molecules	Diffusion Osmosis Lab	
	across membranes with membrane structure and function.		
2.B.2	L.O 2.12: Use representations and models to analyze situations or	Diffusion Challenge Lab	
	solve problems qualitatively and quantitatively to investigate whether	Water Potential FRQ	
	dynamic homeostasis is maintained by the active movement of		
	molecules across membranes.		

QUARTER 2

Topic: Cell Communication		
Key Terms: Signal transduction	n pathway, hormones, ligands	
Measurable Skills: Describe, co	ompare contrast, interpret	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.D.1	L.O. 3.31: Describe basic chemical processes for cell communication	Hedgehog Signal Transduction
	shared across evolutionary lines of decent. Science Practice (SP) 1,7	Pathway.
3.D.1	L.O. 3.32: Generate scientific questions involving cell communication as it	POGIL Signal Transduction
	relates to the process of evolution.	Pathway.
3.D.1	L.O. 3.33: Use representations and appropriate models to describe	
	features of a cell signaling pathway.	
3.D.2	L.O. 3.34: Construct explanations of cell communication through cell-to-	
	cell direct contact or though chemical signaling.	
3.D.2	L.O. 3.35 Create representations that depict how cell-to-cell	
	communication occurs by direct contact or from a distance through	
	chemical signaling.	
3.D.3	L.O. 3.36: Describe a model that expresses the key elements of signal	
	transduction pathways by which a signal is converted to a cellular	
	response.	
3.D.4	L.O. 3.37: Justify claims based on scientific evidence that changes in signal	
	transduction pathways can alter cellular response.	
3.D.4	L.O. 3.38: Describe a model that expresses a key elements to show how	
	change in signal transduction can alter cellular response.	
3.D.4	L.O. 3.39: Construct an explanation of how certain drugs affect signal	
	reception and consequently, signal transduction pathways.	

QUARTER 2			
Topic: Cell Cycle			
Key Terms: Cell cycle, chromos	ome, genome, somatic cells, chromatin, gametes, cytokinesis, meiosis	s, mitosis, (all phases of cell cycle),	
cytokinesis, binary fission, dens	ity-dependent inhibition		
Measurable Skills: Record, ana	lyze, conclude, calculate, investigate, compare	1	
AP College Board	Student Learning Targets	Learning Activities/Investigations	
Essential Knowledge	(AP Learning Objectives and Science Practices)		
3.A.2	L.O. 3.7: Make predictions of natural phenomena occurring during	Mitosis Pre-Lab	
	the cell cycle.		
3.A.2	L.O. 3.8: Describe the events that occur in the cell cycle.	Mitosis Lab Microscope	
3.A.2	L.O. 3.9: Construct an explanation, using visual representations or	Mitosis Lab Standard Deviation	
	narratives, as to how DNA in chromosomes is transmitted to the	Mitosis Lab Chi-Square	
	next generation via mitosis, or meiosis followed by fertilization.		
3.A.2	L.O. 3.11: Evaluate evidence provided by data sets to support the	Cancer Activity	
	claim that heritable information is passed from one generation to		
	another generation through mitosis, or meiosis followed by		
	fertilization.		
2.E.2	L.O.2.35: Design a plan for collecting data to support the scientific		
	claim that the timing and coordination of physiological events		
	involve regulation.		
2.E.2	L.O. 2.36: Justify scientific claims with evidence to show how		
	timing and coordination of physiological events involve regulation.		

QUARTER 2				
Topic: Genetics and Evolutionar	y History of Biological Diversity: Viruses and Bacteria and Archaea			
Key Terms: Bacteriophage, lytic	c and lysogenic cycle, prophage, vaccines, viroids, prions, transformatio	n, transduction, conjugation, plasmid,		
operons, gram positive and neg	ative, photoautotrophs, chemoautotrophs, photoheterotrophs, chemo	heterotrophs, nitrogen fixation, obligate		
aerobes, facultative anaerobes, anaerobic respiration, extremophiles, thermophiles, halophiles, methanogens, symbiosis				
Measurable Skills: Investigate, compare contrast				
AP College Board	AP College Board Student Learning Targets Learning Activities/Investigations			
Essential Knowledge	(AP Learning Objectives and Science Practices)			
3.C.3	L.O. 3.29: Construct an explanation of how viruses introduce genetic	Bacteria Microscope Lab		
	variation in host organisms. Science Practice (SP): 1, 3, 6, 7			

QUARTER 2

Topic: Genetics and Evolutionary History of Biological Diversity: Viruses and Bacteria and Archaea

Key Terms: Bacteriophage, lytic and lysogenic cycle, prophage, vaccines, viroids, prions, transformation, transduction, conjugation, plasmid, operons, gram positive and negative, photoautotrophs, chemoautotrophs, photoheterotrophs, chemoheterotrophs, nitrogen fixation, obligate aerobes, facultative anaerobes, anaerobic respiration, extremophiles, thermophiles, halophiles, methanogens, symbiosis

Measurable Skills: Investigate, compare contrast			
AP College Board	Student Learning Targets	Learning Activities/Investigations	
Essential Knowledge	(AP Learning Objectives and Science Practices)		
3.C.3	L.O. 3.30: Use representations and appropriate models to describe		
	how viral replication introduces genetic variation in the viral		
	population.		
3.D.1	L.O. 3.31: Describe basic chemical processes for cell communication		
	shared across evolutionary lines of decent.		

QUARTER 2

Topic: Introduction to Metabolism

Key Terms: Catabolic and anabolic pathways, kinetic and potential energy, thermodynamics, free energy, endergonic and exergonic reactions, ATP, activation energy, enzymes, substrate, cofactors, coenzyme, allosteric site, feedback inhibition

Measurable Skills: Design, investigate, present, analyze and collect data, interpret and record

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.A.1	L.O. 2.1: Explain how biological systems use free energy based on empirical data that all organisms require constant energy input to maintain organization to grow and reproduce. Science Practice (SP): 1, 3, 4, 5, 6, 7	Enzyme Pre-lab
2.A.1	L.O. 2.2: Justify a scientific claim that free energy is required for living systems to maintain organization, to grow or to reproduce, but that multiple strategies exist in different living systems.	Enzyme Lab
2.A.1	L.O. 2.3: Predict how changes in free energy availability affect organism, populations and ecosystems.	Enzyme Design Lab Lab Presentation
4.B.1	L.O. 4.17: Analyze data to identify how molecular interactions affect structure and function.	Enzyme FRQ

_	-			
			•	
•			•	

Topic: Cellular Respiration and Fermentation

Key Terms: Fermentation, cell respiration, NAD+, FADH2, electron transport chain, glycolysis, citric acid cycle, substrate level phosphorylation, chemiosmosis, proton motive force, anaerobic, facultative anaerobes

Measurable Skills: Modeling, investigation, design, collection, recording, analyzing, and concluding, presentation

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.A.1	L.O. 2.2: Justify a scientific claim that free energy is required for	Cell Respiration Pre-lab
	living systems to maintain organization, grow or to reproduce, but	Cell Respiration FRQ
	that multiple strategies exist in different living systems. Science	
	Practices (SP) 1, 2, 3, 4, 5, 6, 7	
2.A.2	L.O. 2.4: Pose scientific questions about what mechanisms and	Cell Respiration Lab with sensors
	structural features allow organisms to capture, store and use free	Cell Respiration FRQ
	energy.	
2.A.2	L.O. 2.5: Construct explanations of the mechanisms and structural	Cell Respiration Design Lab with sensors
	features of cells that allow organisms to capture store or use free	
	energy.	
2.A.2	L.O. 2.41: Evaluate data to show the relationship between	Modeling Cell Respiration
	photosynthesis and respiration in the flow of free energy through	Fermentation "In a Bag" Design challenge
	a system.	

QUARTER 3			
Topic: Photosynthesis			
Key Terms: Chlorophyll, mesop	hyll, stroma, stomata, thylakoids, light reactions, Calvin cycle, photopl	nosphorylation, photon, action spectrum,	
photosystems, cyclic/noncylic e	lectron flow, chemiosmosis, photorespiration, CAM		
Measurable Skills: Design, inve	stigate, record, analyze, calculate, concluding and presenting data		
AP College Board	Student Learning Targets Learning Activities/Investigatio		
Essential Knowledge	(AP Learning Objectives and Science Practices)		
2.A.1	L.O. 2.1: Explain how biological systems use free energy based on empirical data that all organisms require constant energy input to maintain organization, to grow and to reproduce. Science Practices: (SP) 1,2,3,4,5,6,7	Modeling Photosynthesis	

QUARTER 3			
Topic: Photosynthesis			
Key Terms: Chlorophyll, mesop	hyll, stroma, stomata, thylakoids, light reactions, Calvin cycle, photop	hosphorylation, photon, action spectrum,	
photosystems, cyclic/noncylic e	lectron flow, chemiosmosis, photorespiration, CAM		
Measurable Skills: Design, inve	stigate, record, analyze, calculate, concluding and presenting data		
AP College Board	Student Learning Targets	Learning Activities/Investigations	
Essential Knowledge	(AP Learning Objectives and Science Practices)		
2.A.1	L.O. 2.2: Justify a scientific claim that free energy is required for	Photosynthesis Pre-Lab	
	living systems to maintain organization, to grow or to reproduce,	Cell Respiration and Photosynthesis FRQ	
	but that multiple strategies exist in different living systems.		
2.A.1	L.O. 2.3: Predict how changes in free energy availability affect	Design Photosynthesis Lab	
	organisms, populations and ecosystems.	Absorbance Lab	
		Chromatography Lab	
2.A.2	L.O.2.4, L.O. 2.5: Use representations to pose scientific questions	Florescence Demonstration	
	and construct explanations about what mechanics and structural		
	features allow organisms to capture, store and use free energy.		

	QUARTER 3	
Topic: Genetics: Meiosis and Se	xual Life Cycles	
Key Terms: Asexual reproduction	on, gametes, sexual reproduction, autosomes, homologous chromoso	mes, haploid and diploid cells, zygote,
alternation of generations, meio	osis (all the phases), crossing over, random fertilization, tetrads, indep	endent assortment
Measurable Skills: Investigate,	collecting and concluding on data, calculating, describing	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.A.2	L.O.3.7: Make predictions about natural phenomena occurring	Sordaria Lab
	during the cell cycle. Science Practices (SP) 2,4,5,6,7	Sordaria Pre-lab
3.A.2	L.O. 3.8: Describe the events that happen in the cell cycle.	
3.A.2	L.O. 3.9: Construct an explanation, using visual representations or	
	narratives, as to how DNA in chromosomes is transmitted to the	
	next generation via mitosis, or meiosis followed by fertilization.	
3.A.2	L.O. 3.10: Represent the connection between meiosis and	
	increased genetic diversity necessary for evolution.	
3.A.2	L.O. 3.11: Evaluate evidence provided by data sets to support the	

	QUARTER 3	
Topic: Genetics: Meiosis and Set	xual Life Cycles	
Key Terms: Asexual reproduction	on, gametes, sexual reproduction, autosomes, homologous chromoso	mes, haploid and diploid cells, zygote,
alternation of generations, meio	osis (all the phases), crossing over, random fertilization, tetrads, indep	endent assortment
Measurable Skills: Investigate,	collecting and concluding on data, calculating, describing	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	claim that heritable information is passed from one generation to	
	another generation through mitosis, or meiosis followed by	
	fertilization.	
3.A.3	L.O. 3.12: Construct a representation that connects the process of	
	meiosis to the passage of traits from parent to offspring.	
3.A.3	L.O. 3.13: Pose questions about ethical, social, or medical issues	
	surrounding human genetic disorders.	
3.C.2	L.O. 3.27: Compare and contrast processes by which genetic	
	variation is produced and maintained in organisms from multiple	
	domains.	
3.C.2	L.O. 3.28: Construct an explanation of the multiple processes that	
	increase variation within a population.	

QUARTER 3

Topic: Genetics: Molecular Basis of Inheritance and Gene to Protein

Key Terms: Transformation, semiconservative model, DNA polymerase, leading strand, lagging strand, (all replication enzymes) telomeres and transcription, translation, RNA processing, codons, RNA polymerase, introns, exons, spliceosome, anticodon, rRNA, tRNA, mRNA, missense and nonsense mutations, insertions, deletions, translocations, frameshift mutations

Measurable Skills: Modeling, compare contrast, demonstrate, differentiate, construct.

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.A.1	L.O. 3.1: Construct scientific explanations that use the structures and mechanisms of DNA and RNA to support the claim that DNA and, in some cases, that RNA are the primary sources of heritable information.	
3.A.1	L.O. 3.2: Justify the selection of data from historical investigations	

QUARTER 3

Topic: Genetics: Molecular Basis of Inheritance and Gene to Protein

Key Terms: Transformation, semiconservative model, DNA polymerase, leading strand, lagging strand, (all replication enzymes) telomeres and transcription, translation, RNA processing, codons, RNA polymerase, introns, exons, spliceosome, anticodon, rRNA, tRNA, mRNA, missense and nonsense mutations, insertions, deletions, translocations, frameshift mutations

Measurable Skills: Modeling, compare contrast, demonstrate, differentiate, construct.

AD College Reard	Student Learning Targets	Learning Activities (Investigations
		Learning Activities/investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	that support the claim that DNA is the source of heritable	
	information.	
3.A.1	L.O. 3.3: Describe representations and models that illustrate how	
	genetic information is copied for transmission between	
	generations.	
2.E.1	L.O. 2.33: Justify scientific claims with scientific evidence to show	DNA Modeling
	that timing and coordination of several events are necessary for	
	normal development in an organism and that these events are	
	regulated by multiple mechanisms. Science Practices (SP) 1,3,6,7	
3.A.1	L.O. 3.4: Describe representations and models illustrating how	Transcription Modeling
	genetic information is translated into polypeptides. Science	Translation Modeling
	Practice (SP) 1,3,6,7	
3.A.1	L.O. 3.6: Predict how a change in a specific DNA or RNA sequence	DNA Synthesis FRQ
	can result in changes in gene expression.	
3.B.2	L.O. 3.22 Explain how signal pathways mediate gene expression,	
	including how this process can affect protein production	
3.B.2	L.O. 3.23: Use representations to describe mechanisms of the	
	regulation of gene expression.	
3.C.1	L.O. 3.25: Create a visual representation to illustrate how changes	
	in a DNA nucleotide sequence can result in a change in the	
	polypeptide produced.	

	QUARTER 3	
Topic: Genetics: DNA Technolog	gy and Genomics and Genomes and Their Evolution and Regulation of	Gene Expression
Key Terms: : Biotechnology, res	striction enzymes, sticky ends, polymerase chain reaction, gel electrop	phoresis, RFLPs, human genome project,
gene therapy, DNA fingerprint a	nd differential gene expression, nucleosomes proteasomes, Histone	Code Hypothesis, differentiation,
morphogenesis, cytoplasmic de	terminants, egg-polarity genes, bicoid, Morphogen Gradient Hypothe	sis, bioinformatics, proteomics
Measurable Skills: Investigate,	collect, analyze, record, conclude, model, describe	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.A.1	L.O. 3.5: Explain the claim that humans can manipulate heritable	DNA Pre-Lab
	information by identifying at least two commonly used	DNA Forensics Lab
	technologies. Science Practice (SP) 1, 2, 5, 7	
3.C.1	L.O. 3.26: Explain the connection between genetic variations in	Modeling Plasmids
	organisms and phenotypic variations in populations.	Transformation Pre-Lab
4.C.1	L.O. 4.22: Construct explanations based on evidence of how	Transformation Lab Firefly
	variation in molecular units provides cells with a wider range of	POGIL Lac Operon
	functions.	
2.E.1	L.O. 2.31: Connect concepts in and across domains to show that	Biotechnology FRQ
	timing and coordination of specific events are necessary for	
	normal development in an organism and that these events are	
	regulated by multiple mechanisms.	
2.E.1	L.O. 2.32: Use a graph or diagram to analyze situations or solve	
	problems (quantitatively or qualitatively) that involve timing and	
	coordination of events necessary for normal development in an	
	organism.	
2.E.1	L.O.2.34: Describe the role of programmed cell death in	
	development and differentiation, the reuse of molecules, and the	
	maintenance of dynamic homeostasis.	
3.B.1	L.O. 3.18: Describe the connection between the regulation of gene	
	expression and observed differences between different kinds of	
	organisms.	
3.B.1	L.O. 3.19: Describe the connection between the regulation of gene	
	expression and observed differences between individuals in a	
	population.	
3.B.1	L.O. 3.20: Explain how the regulation of gene expression is	

Board of Education Adopted: May 13, 2019

QUARTER 3

Topic: Genetics: DNA Technology and Genomics and Genomes and Their Evolution and Regulation of Gene Expression

Key Terms: : Biotechnology, restriction enzymes, sticky ends, polymerase chain reaction, gel electrophoresis, RFLPs, human genome project, gene therapy, DNA fingerprint and differential gene expression, nucleosomes proteasomes, Histone Code Hypothesis, differentiation, morphogenesis, cytoplasmic determinants, egg-polarity genes, bicoid, Morphogen Gradient Hypothesis, bioinformatics, proteomics

Measurable Skills: Investigate, collect, analyze, record, conclude, model, describe		
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	essential for the processes and structures that support efficient	
	cell function.	
3.B.1	L.O. 3.21: Use representations to describe how gene regulation	
	influences cell products and function.	
3.B.2	L.O. 3.22: Explain how signal transduction pathways mediate gene	
	expression, including how this process can affect protein	
	production.	
3.B.2	L.O. 3.23: Use representations to describe mechanisms of the	
	regulation of gene expression.	
4.A.3	L.O. 4.7: Refine representations to illustrate how interactions	
	between external stimuli and gene expression result in	
	specialization of cells tissues and organs.	

QUARTER 4

Topic: Genetics: Mendel and the Gene Idea and Chromosomal Basis of Inheritance

Key Terms: Punnett square, phenotype, genotype, complete dominance, incomplete dominance, codominance, alleles, pedigree, deletions, duplications, inversions, and translocations, X inactivation

Measurable Skills: Calculate, investigate, solve, predict, record, analyze, conclude

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.A.3	L.O 3.12: Connect the process of meiosis to the passage of traits	Drosophila Lab
	from parent to offspring. Science Practice: (SP) 1,2,4, 5,6,7	
3.A.3	L.O 3.13: Pose questions about ethical, social or medical issues	Genetics Problems
	surrounding human genetic disorders.	
3.A.3	L.O 3.14: Apply mathematical routines to determine Mendelian	

QUARTER 4		
Topic: Genetics: Mendel and the Gene Idea and Chromosomal Basis of Inheritance		
Key Terms: Punnett square, ph	enotype, genotype, complete dominance, incomplete dominance, cod	ominance, alleles, pedigree, deletions,
duplications, inversions, and tra	inslocations, X inactivation	
Measurable Skills: Calculate, in	vestigate, solve, predict, record, analyze, conclude	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	patterns of inheritance provided by data sets.	
3.A.4	L.O. 3.15: Describe the deviations from Mendel's model of the	
	inheritance of traits.	
3.A.4	L.O. 3.16: Explain how the inheritance patterns of many traits	
	cannot be accounted for by Mendelian genetics.	
3.A.4	L.O. 3.17: Describe representations of an appropriate example of	
	inheritance patterns that cannot be explained by Mendel's model	
	of the inheritance of traits.	
3.C.1	L.O. 3.24: Predict how a change in genotype, when expressed as a	
	phenotype, provides a variation that can be subject to natural	
	selection.	
4.C.2	L.O. 4.23: Construct explanations of the influence of	
	environmental factors on the phenotype of an organism.	
4.C.2	L.O. 4. 24 Predict the effects of a change in an environmental	
	factor on gene expression and the resulting phenotype of an	
	organism.	
4.C.3	L.O. 4.25: Use evidence to justify a claim that a variety of	
	phenotypic responses to a single environmental factor can result	
	from different genotypes within the population.	

QUARTER 4

Topic: Mechanisms of Evolution: Decent with Modification, Evolution of Population, Origin of Species, and History of Life on Earth

Key Terms: Natural Selection, Evolution, Catastrophism, Uniformitarianism, Gradualism, Artificial Selection, Homologies and Microevolution, Gene Pool, Hardy-Weinberg Theorem, Mutation, Genetic Drift, Bottleneck Effect, Founder Effect, Gene Flow, Fitness and Speciation, Biological Species Concept, Prezygotic and Postzygotic barriers, Allopatric and Sympatric Speciation, Polyploidy, Adaptive Radiation, Punctuated Equilibrium, and Phylogeny, Monophyletic, Cladogram

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.A.1	L.O. 1.1: Convert a data set from a table of numbers that reflect a	Hardy-Weinberg Lab
	change in genetic makeup of a population over time and to apply	
	mathematical methods and conceptual understandings to	
	investigate the cause and effect of this change. Science Practice	
	(SP) 2,5,6.	
1.A.1	L.O. 1.2: Evaluate evidence provided by data to qualitatively and	
	/or quantitatively investigate the role of natural selection in	
	evolution.	
1.A.4	LO. 1.9: Evaluate evidence provided by data from many scientific	Evolution Story
	disciplines that support biological evolution.	
1.A.4	L.O. 1.10: Refine evidence based on data from scientific disciplines	HHMI "Making of the Fittest"
	that support biological evolution.	
1.A.4	L.O. 1.11: Design a plan to answer scientific questions regarding	
	how organismrs have changed over time using information from	
	morphology, biochemistry and geology.	
1.A.4	L.O. 12: Connect scientific evidence from many scientific	
	disciplines to support the modern concept of evolution.	
1.A.4	L.O. 13: Construct or justify mathematical models, diagrams or	
	simulations that represent processes of biological evolution.	
1.B.1	L.O. 1.4: Evaluate data-based evidence that describes evolutionary	
	changes in the genetic makeup of a population over time.	
1.B.1	L.O. 1.5: Connect evolutionary changes in a population over time	
	to a change in the environment.	
1.B.1	L.O. 1.6: Use data from mathematical models based on the Hardy-	

QUARTER 4

Topic: Mechanisms of Evolution: Decent with Modification, Evolution of Population, Origin of Species, and History of Life on Earth

Key Terms: Natural Selection, Evolution, Catastrophism, Uniformitarianism, Gradualism, Artificial Selection, Homologies and Microevolution, Gene Pool, Hardy-Weinberg Theorem, Mutation, Genetic Drift, Bottleneck Effect, Founder Effect, Gene Flow, Fitness and Speciation, Biological Species Concept, Prezygotic and Postzygotic barriers, Allopatric and Sympatric Speciation, Polyploidy, Adaptive Radiation, Punctuated Equilibrium, and Phylogeny, Monophyletic, Cladogram

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	Weinberg equilibrium to analyze genetic drift and effects of	
	selection in the evolution of specific populations.	
1.A.3	L.O. 1.7: Justify data from mathematical models based on the	
	Hardy-Weinberg equilibrium to analyze genetic drift and the	
	effects of selection in the evolution of specific populations.	
1.A.3	L.O. 1.8: Make predictions about the effects of genetic drift,	
	migration and artificial selection on the genetic makeup of a	
	population.	
1.C.3	L.O. 1.25: Describe a model that represents evolution within a	
	population.	
1.C.3	L.O. 1.26: Evaluate given data sets that illustrate evolution as an	
	ongoing process.	
3.C.1	L.O. 3.26: Explain the connection between genetic variations in	
	organisms and phenotypic variations in populations.	
4.C.3	L.O. 4.26: Use theories and models to make scientific claims and or	
	predictions about the effects of variation within populations on	
	survival and fitness.	
4.C.4	L.O. 4.27: Make scientific claims and predictions about how	HHMI "The Origin of Species: The Beak of
	species diversity within an ecosystem influences ecosystem	the Finch"
	stability.	
1.C.1	L.O. 1.20: Analyze data related to questions of speciation and	
	extinction throughout the Earth's history. Science Practice (SP) 3,	
	6, 7	
1.C.1	L.O. 1.21: Design a plan for collecting data to investigate the	

QUARTER 4

Topic: Mechanisms of Evolution: Decent with Modification, Evolution of Population, Origin of Species, and History of Life on Earth

Key Terms: Natural Selection, Evolution, Catastrophism, Uniformitarianism, Gradualism, Artificial Selection, Homologies and Microevolution, Gene Pool, Hardy-Weinberg Theorem, Mutation, Genetic Drift, Bottleneck Effect, Founder Effect, Gene Flow, Fitness and Speciation, Biological Species Concept, Prezygotic and Postzygotic barriers, Allopatric and Sympatric Speciation, Polyploidy, Adaptive Radiation, Punctuated Equilibrium, and Phylogeny, Monophyletic, Cladogram

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	scientific claim that speciation and extinction have occurred	
	throughout the Earth's history.	
1.C.2	L.O. 1.22: Use data from real or simulated populations , based on	
	graphs or models of types of selection, to predict what will happen	
	to the population in the future.	
1.C.2	L.O. 1.23: Justify the selection of data that addresses questions	
	related to reproductive isolation and speciation.	
1.C.2	L.O. 1.24: Describe speciation in an isolated population and	
	connect it to change in gene frequency, change in environment,	
	natural selection and/or genetic drift.	
1.B.1	L.O. 1.14: Pose scientific questions that correctly identify essential	
	properties of shared, core life processes that provide insights in to	
	the history of life on Earth.	
1.B.1	L.O. 1.15: Describe specific examples of conserved core biological	
	processes and features shared by all domains or within one	
	domain of life, and how these shared, conserved core processes	
	and features support the concept of common ancestry for all	
	organisms.	
1.B.1	L.O. 1.16: Justify the scientific claim that organisms share many	HHMI " Great Transitions"
	conserved core processes and features that evolved and are	
	widely distributed among organisms today.	
1.D.1	L.O. 1.27: Describe a scientific hypothesis about the origin of life	
	on Earth.	
1.D.1	L.O. 1.28: Evaluate scientific questions based on hypotheses about	
	the origin of life on Earth.	

QUARTER 4

Topic: Mechanisms of Evolution: Decent with Modification, Evolution of Population, Origin of Species, and History of Life on Earth

Key Terms: Natural Selection, Evolution, Catastrophism, Uniformitarianism, Gradualism, Artificial Selection, Homologies and Microevolution, Gene Pool, Hardy-Weinberg Theorem, Mutation, Genetic Drift, Bottleneck Effect, Founder Effect, Gene Flow, Fitness and Speciation, Biological Species Concept, Prezygotic and Postzygotic barriers, Allopatric and Sympatric Speciation, Polyploidy, Adaptive Radiation, Punctuated Equilibrium, and Phylogeny, Monophyletic, Cladogram

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.D.1	L.O. 1.29: Describe the reasons for revisions of scientific	
	hypotheses of he origin of life on Earth.	
1.D.1	L.O. 1.30: Evaluate scientific hypotheses about the origin of life on	
	Earth.	
1.D.1	L.O. 1.31: Evaluate the accuracy and legitimacy of data to answer	
	scientific questions about the origin of life on Earth.	
1.D.2	L.O. 1.32: Justify the selection of geological, physical, and chemical	
	data that reveal early Earth conditions.	
4.B.3	L.O. 4.19: Use data analysis to refine observations and	
	measurements regarding the effect of population interactions on	
	patterns of species distribution and abundance.	
4.B.3	L.O. 4.20: Explain how the distribution of ecosystems changes over	
	time by identifying large-scale events that have resulted in these	
	changes in the past.	

QUARTER 4			
Topic: Evolutionary History of B	iological Diversity: Phylogeny and the Tree of Life		
Key Terms: Phylogeny, Taxonomy, Phylogenetic Tree, Cladistics			
Measurable Skills: Create, Justify, Model, Evaluate			
AP College Board	Student Learning Targets	Learning Activities/Investigations	
Essential Knowledge	(AP Learning Objectives and Science Practices)		
1.B.2	L.O. 1.17: Pose scientific questions about a group of organisms	POGIL Phylogenetic Tree	
	whose relatedness is described by a phylogenetic tree or		
	cladogram in order to identify shared characteristics, make		

QUARTER 4		
Topic: Evolutionary History of Biological Diversity: Phylogeny and the Tree of Life		
Key Terms: Phylogeny, Taxonor	ny, Phylogenetic Tree, Cladistics	
Measurable Skills: Create, Justi	fy, Model, Evaluate	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	inferences about the evolutionary history of the group and identify	
	character data that could extend or improve the phylogenetic	
	tree. Science Practices (SP) 1, 3, 5, 6	
1.B.2	L.O. 1.18: Evaluate evidence provided by a data set in conjunction	Phylogenetic Trees FRQ
	with a phylogenetic tree or a simple cladogram to determine	
	evolutionary history and speciation.	
1.B.2	L.O. 1.19: Create a phylogenetic tree or simple cladogram that	
	correctly represents evolutionary history and speciation from a	
	provided data set.	
1.D.2	L.O. 1.32: Justify the selection of geological, physical, and chemical	
	data that reveal early Earth conditions.	
2.D.2	L.O. 2.25: Construct explanations based on scientific evidence that	
	homeostatic mechanisms reflect continuity due to common	
	ancestry and/or divergence due to adaptation in different	
	environments.	
2.D.2	L.O. 2.26: Analyze data to identify phylogenetic patterns or	
	relationships, showing that homeostatic mechanisms reflect both	
	continuity due to common ancestry and change due to evolution	
	in different environments.	

QUARTER 4

Topic: Plant Form and Function: Plant Responses; Animal Form and Function, Immune System, Hormones and Endocrine System, Neurons Synapses Signaling, and Nervous System

Key Terms: Etiolation, signal transduction, phototrophism, circadian rhythms, photoperiodism, systemic acquired resistance and innate immunity, adaptive immunity, phagocytes, t-cells, b-cells, inflammatory response, antibodies, humoral and cell-mediated immune response and endocrine, paracrine, autocrine, hormone, signal transduction, names of glands /hormones and functions, negative and positive feedback and neurons, central and peripheral nervous system, cell body, dendrite, axon, membrane potential, action potential, synapsis and motor and autonomic nervous system, regions of brain and functions

Measurable Skills: Analyze, justify, compare, differentiate

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.E.2	L.O. 2.37: Connect concepts that describe mechanisms that	Plant Hormone Lab
	regulate the timing and coordination of physiological events.	
2.E.3	L.O. 2.38: Analyze data to support the claim that responses to	Brain Lab
	information and communication of information affect natural	
	selection.	
2.D.4	L.O. 2.29: Create representations and models to describe immune	
	responses.	
2.D.4	L.O. 2.30: Create representations or models to describe	
	nonspecific immune defenses in plants and animals.	
2.C.2	L.O. 2.21: Justify the selection of the kind of data needed to	
	answer scientific questions about the relevant mechanism that	
	organisms use to respond to changes in their external	
	environment.	
2.C.1	L.O. 2.15: Justify a claim made about the effects on a biological	
	system at the molecular, physiological or organismal level when	
	given a scenario in which one or more components within a	
	negative regulatory system is altered.	
2.C.1	L.O. 2.16: Connect how organisms use negative feedback to	
	maintain their internal environments.	
2.C.1	L.O. 2.17: Evaluate data that show the effects of changes in	
	concentrations of key molecules on negative feedback	
	mechanisms.	

QUARTER 4				
Topic: Plant Form and Function: Plant Responses; Animal Form and Function, Immune System, Hormones and Endocrine System, Neurons				
Synapses Signaling, and Nervous System				
Key Terms: Etiolation, signal transduction, phototrophism, circadian rhythms, photoperiodism, systemic acquired resistance and innate				
immunity, adaptive immunity, phagocytes, t-cells, b-cells, inflammatory response, antibodies, humoral and cell-mediated immune response and				
endocrine, paracrine, autocrine, hormone, signal transduction, names of glands /hormones and functions, negative and positive feedback and				
neurons, central and peripheral nervous system, cell body, dendrite, axon, membrane potential, action potential, synapsis and motor and				
autonomic nervous system, regions of brain and functions				
Measurable Skills: Analyze, justify, compare, differentiate				
2.C.1	LO. 2.18: Make predictions about how organisms use negative			
	feedback mechanisms to maintain their internal environments.			
2.C.1	L.O. 2.19: Make predictions about how positive feedback			
	mechanisms amplify activities and processes in organisms based			
	on scientific theories and models.			
2.C.1	L.O. 2.20: Justify that positive feedback mechanisms amplify			
	responses in organisms.			
2.D.2	L.O. 2.27: Connect differences in the environment with the			
	evolution of homeostatic mechanisms.			
2.D.4	L.O. 2.43: Connect the concept of cell communication to the			
	functioning of the immune system.			
3.D.1	L.O. 3.31: Describe basic chemical processes for cell			
	communication shared across evolutionary lines of decent.			
3.D.1	L.O. 3.33: Use representations and appropriate models to describe			
	features of a cell signaling pathway.			
3.D.2	L.O. 3.34: Construct explanations of cell communication through			
	cell-to-cell direct contact or from a distance through chemical			
	signaling.			
3.E.2	L.O. 3.43: Construct an explanation, based on scientific theories			
	and models, about how nervous systems detect external and			
	internal signals, transmit and integrate information and produce			
	responses.			
3.E.2	L.O. 3.44: Describe how nervous systems detect external and			
	internal signals.			

QUARTER 4				
Topic: Plant Form and Function: Plant Responses; Animal Form and Function, Immune System, Hormones and Endocrine System, Neurons				
Synapses Signaling, and Nervous System				
Key Terms: Etiolation, signal transduction, phototrophism, circadian rhythms, photoperiodism, systemic acquired resistance and innate				
immunity, adaptive immunity, phagocytes, t-cells, b-cells, inflammatory response, antibodies, humoral and cell-mediated immune response and				
endocrine, paracrine, autocrine, hormone, signal transduction, names of glands /hormones and functions, negative and positive feedback and				
neurons, central and peripheral nervous system, cell body, dendrite, axon, membrane potential, action potential, synapsis and motor and				
autonomic nervous system, regions of brain and functions				
Measurable Skills: Analyze, justify, compare, differentiate				
3.E.2	L.O. 3.45: Describe how nervous systems transmit information.			
3.E.2	L.O. 3.46: Describe how the vertebrate brain integrates			
	information to produce a response.			
3.E.2	L.O. 3.47: Create visual representations of complex nervous			
	systems to describe/explain how these systems detect external			
	and internal signals, transmit and integrate information, and			
	produce responses.			
3.E.2	L.O. 3.48: Create a visual representation to describe how nervous			
	systems detect external and internal signals.			
3.E.2	L.O. 3.49: Create a visual representation to describe how nervous			
	systems transmit information.			
3.E.2	L.O. 3.50: Create a visual representation to describe how the			
	vertebrate brain integrates information to produce a response.			
4.A.4	L.O. 4.8: Evaluate scientific questions concerning organisms that	Pig Dissection		
	exhibit properties due to the interaction of their constituent parts.			

District Instructional Resource:

Principles of Life for AP (2014) / Bedford Freeman & Worth (6-year online subscription: 2019-2020 to 2024-2025)

Standards Alignment:

AP Biology Course and Exam Description (2015) – retrieved Jan. 2, 2019 <u>https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-biology-course-and-exam-description.pdf</u>